
Efficient Accumulator Initialisation

Xiang-Fei Jia

Department of
Computer Science

University of Otago
Dunedin, New Zealand

fei@cs.otago.ac.nz

Andrew Trotman

Department of
Computer Science

University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

Richard O‘Keefe

Department of
Computer Science

University of Otago
Dunedin, New Zealand

ok@cs.otago.ac.nz

Abstract IR efficiency is normally addressed
in terms of accumulator initialisation, disk I/O,
decompression, ranking and sorting. Traditionally,
the performance of search engines is dominated by
slow disk I/O, CPU-intensive decompression, complex
similarity ranking functions and sorting a large
number of candidate documents. However, after we
have applied a number of optimisation techniques,
our search engine is bottlenecked by accumulator
initialisation. In this paper, we propose an efficient
accumulator initialisation algorithm, which represents
the traditional static accumulator array as a logical
two dimensional table and uses a number of flags to
track the initialisation status of the accumulators. The
efficiency of the algorithm is verified by a simulation
program and a search engine. The overall performance
can be as good as a 93% increase in throughput.

Keywords Accumulator Initialisation, Efficiency,
Postings Pruning.

1 Introduction
Effectiveness and efficiency are two of the main issues
in Information Retrieval (IR). Effectiveness has been
the main focus of research. In recent years, efficiency
has started to draw more attention under the trend of
larger document collection sizes.

IR efficiency is normally addressed in terms of ac-
cumulator initialisation, disk I/O, decompression, rank-
ing and sorting. A large portion of the performance of
search engines is dominated by (1) slow disk read of
dictionary terms and the corresponding postings lists,
(2) CPU-intensive decompression of postings lists, (3)
complex similarity ranking functions and (4) sorting a
large number of possible candidate documents. The
effect of accumulator initialisation on the performance
has almost been ignored.

However, after we applied a number of optimisation
techniques, our search engine was bottlenecked by ac-
cumulator initialisation. We have deployed space effi-
cient compression algorithms for storing the dictionary

Proceedings of the 15th Australasian Document Comput-
ing Symposium, Melbourne, Australia, 10 December 2010.
Copyright for this article remains with the authors.

Figure 1: The performance of our optimised search
engine using traditional static array for accumulator
initialisation.

and inverted files, disk I/O is completely eliminated by
simply storing the index in memory. Instead of storing
the traditional〈document number, term frequency〉 pair
in postings, we pre-compute and store impact values
instead [15, 1]. The search engine simply adds the
impact values when ranking.

Postings pruning at query time is a very effective
method for reducing the number of postings to be pro-
cessed and the number of accumulators to be sorted,
while still maintaining high precision [8, 14, 23, 17, 1,
22]. Since only part of the postings lists is processed in
pruning, only partial decompression of postings lists is
required [14, 13, 3, 2]. Our search engine has adopted
a heap data structure to keep track of the top k docu-
ments and static pruning of postings lists with partial
decompression.

Figure 1 shows the performance of our optimised
search engine with these optimisations enabled. The
document collection and queries are the INEX 2009
Wikipedia collection [18] and the 115 Type-A (short)
queries from the INEX 2009 Efficiency Track [19].
Only the top k=15 results are returned and each
column in the figure corresponds to a static pruning
of 10, 100, 1000, 10 000, 100 000, 1 000 000 postings.
When no more than 10 000 postings are processed,
the accumulator initialisation takes most of the time,



between 50% and 96% of the total time. When there
are 100 000 and 1 000 000 postings (which is one third
of the collection size) being processed, the accumulator
initialisation still takes 20% and 11% of the total
evaluation time respectively.

In this paper, we propose an efficient accumulator
initialisation algorithm, using static data structures, for
the term-at-a-timeapproach. The algorithm logically
partitions the static array of accumulators into a two
dimensional table. A flag is created for each logical
row to indicate if that row has been initialised. Before
processing a new query, only the flags are re-initialised
instead of re-initialising all accumulators. Because the
algorithm keeps track of all accumulators, there is no
loss of precision.

The remainder of the paper is organised as follows.
In Section 2, we discuss the related work. Second 3 de-
scribes in detail how the algorithm works and presents
a mathematical model. In Section 4, the performance
of the algorithm is conducted on a simulation and our
search engine. Section 5 concludes.

2 Related Work
Disk I/O involves reading query terms from a
dictionary (a vocabulary of all terms in the collection)
and the corresponding postings lists for the terms.
The dictionary has a small size and can be loaded
into memory at start-up. However, due to their large
size, postings are usually compressed and stored on
disk. A number of compression algorithms have been
developed and compared [21, 4]. Another way of
reducing disk I/O is caching, either at application level
or system level [5, 11]. Since the advent of 64-bit
machines with vast amounts of memory, it has become
feasible to load both the dictionary and the compressed
postings into main memory, thus eliminating all disk
I/O. Reading both dictionary and postings lists into
memory is the approach taken in our search engine.

The processing (decompression and similarity rank-
ing) of postings and subsequent sorting of accumula-
tors can be computationally expensive, especially when
queries contain frequent terms. Processing of these fre-
quent terms not only takes time, but also has little im-
pact on the final ranking results. Postings pruning at
query time is a method to eliminate unnecessary pro-
cessing of postings and thus reduce the number of non-
zero accumulators to be sorted. A number of pruning
methods have been developed and proved to be effi-
cient and effective [8, 14, 23, 17, 1, 22]. In previous
work [22], thetopkpruning algorithm partially sorts the
static array of accumulators using a special version of
quick sort [6] and statically prunes postings. Based on
this work, we have developed theheapkpruning algo-
rithm. Instead of explicitly sorting the accumulators,
we uses a heap data structure to keep track of the top
documents.

Traditionally, postings are stored in pairs of
〈document number, term frequency〉 pairs. However,

postings should be impact ordered so that most
important postings can be processed first and the
less important ones can be pruned using pruning
methods [16, 17, 1]. One approach is to store postings
in order of term frequency and documents with the
same term frequency are grouped together [16, 17].
Each group stores the term frequency at the beginning
of the group followed by the compressed differences
of the document numbers. The format of a postings
list for a term is a list of the groups in descending
order of term frequencies. Another approach is
to pre-compute similarity values and use these
pre-computed impact values to group documents
instead of term frequencies [1]. Pre-computed impact
values are positive real numbers. In order to better
compress these numbers, they are quantised into whole
numbers [15, 1]. Three forms of quantisation method
have been proposed (Left.Geom, Uniform.Geom,
Right.Geom) and each of the methods can better
preserve certain range of the original numbers [1]. In
our search engine, we use pre-computed BM25 impact
values to group documents and the differences of
document numbers in each group are compressed using
Variable Byte Coding by default. We choose to use the
Uniform.Geomquantisation method for transformation
of the impact values, because theUniform.Geom
quantisation method preserves the original distribution
of the numbers, thus no decoding is required at query
time. Each impact value is quantised into an 8-bit
whole number.

Since only partial postings are processed in query
pruning, there is no need to decompress the whole
postings lists. Skipping [14] and blocking [13] allow
pseudo-random access into encoded postings lists and
only decompress the needed parts. Further research
work [3, 2] represent postings in fixed number of
bits, thus allowing full random access. Our search
engine partially decompress postings list based on the
worst case of the static pruning. Since we know the
parameter value of the static pruning and the biggest
size of a uncompress impact value (4 bytes), we can
multiply these number together to find the cut point for
decompression. We can simply hold decompression
after that number of postings have been decompressed.

A number of accumulators, usually as a static ar-
ray, need to be created and initialised forterm-at-a-time
processing [8, 10]. The accumulators hold the interme-
diate accumulated results for each document. For large
collections, a large number of accumulators has to be
used. Initialisation of large number of accumulators can
take time. One solution to cut down the initialisation
time is to use few accumulators, which are allocated
using dynamic search structures [15, 14]. Depending
on which dynamic structure is used, the memory space
required for each accumulator can be several times that
of the static array structure. For example, a balanced
Red-Black tree structure [9] requires about 20 bytes
for each accumulator on 32-bit architectures, and about



32 bytes on 64-bit architectures, compared with only 4
bytes needed in a static array. Only 20% (12.5% for 64-
bit) or less of the total number of accumulators should
be allocated, otherwise the dynamic structure uses more
memory. The more memory is used, the longer it takes
to allocate.

Since only a portion of accumulators can be allo-
cated using dynamic search structures, a pruning algo-
rithm has to be used to keep only the top candidates
and to prune other less important ones [15, 14]. On
the other hand, our search engine allocates all accumu-
lators, and not only keeps track of the top candidates
but also updates the less important accumulators. This
leaves the possibility for the less important candidates
to be among the top ones at the final stage.

The criticism of theterm-at-a-timeapproach is the
requirement of accumulators in order to hold interme-
diate results. Alternatively, thedocument-at-a-timeap-
proach ranks one document at a time, thus does not
need to hold intermediate results [24, 20]. However,
thedocument-at-a-timeapproach requires random scan
of postings lists, which takes time [20].

3 The Algorithm
Instead of using dynamic accumulator structures, we
use two static arrays. One array is used to hold all the
accumulators (one for each document), the other to hold
a number of flags. Every flag is associated with a par-
ticular subset of the accumulators, indicating the initial-
isation status for that set of accumulators. Essentially,
we turn the one dimensional array of accumulators into
a logical two dimensional table as shown in Figure 2.
The dimension of the table is represented byheight and
width. The number of flags is the same as the height of
the table.

Figure 2: The representation of the accumulators in a
logical two dimensional table.

One obvious question is why not just dynamically
allocate each row only when needed and replace the
flags with pointers pointing to the dynamically allo-
cated rows. There are two efficiency issues when rows
are dynamically allocated. First, it is faster to allocate

a large chuck of memory in one go, rather than split-
ting the same of amount of memory into many smaller
pieces and allocating one piece at at time. Modern com-
puters come with very large memories, so it is worth to
sacrifice small amount of memory for speed. Second,
two steps are required to locate each accumulator be-
cause rows are not guaranteed to be allocated consecu-
tively in memory (the first step is to locate the row and
the second step to find the offset in the row).

Another question is how to determine the dimension
of the logical table. In the following sections, a math-
ematical model is provided to answer this question for-
mally and a simulation program is tested with various
sizes of width. For now, let us concentrate on how the
algorithm works.

Initially, the flags are initialised to zero, indicating
all the accumulators having zero values. When updat-
ing an accumulator with a new value, the flag associated
with that row of the accumulator is set to 1. For the
example shown in Figure 2, The second accumulator
in the second logical row has a non-zero value and the
associated flag for the row has a value of 1.

The width has to be a whole number at least 2. The
height can be calculated according to the width and
the size of the document collection, as shown in Al-
gorithm 1. Because the total number of accumulators
represented by the logical table can be more than the
collection size, extra accumulators (shown aspadding
in Algorithm 1) are allocated in the accumulator array
(this is for efficiency). The number of extra accumu-
lators required is usually small and the worst case is
width− 1.

Algorithm 1 Accumulator Initialisation
Require: width ≥ 2

1: N ← total documents in collection
2: height← (N/width) + 1
3: init flags← newarray[height]
4: initialise init flags
5: padding ← (width ∗ height)−N
6: acc← newarray[N + padding]

Algorithm 2 Accumulator Update
Require: doc id ≥ 0 anddoc id < N

1: row ← doc id/width
2: if init flags[row] == 0 then
3: init flags[row]← 1
4: initialise the row of the accumulators inacc
5: end if
6: acc[doc id]← acc[doc id] + new rsv

Algorithm 2 shows how to update the accumulators.
First, the logical row of an accumulator can be obtained
by a division operation of the index of the accumulator.
Second, the row flag is checked. Two possible cases
can happen. If the flag is 0, it set to 1, the associated
accumulators are initialised, and the new value is added
to the accumulator. If the flag is 1, the new value can be
simply aggregated to the accumulator.



3.1 The mathematical model
Let D be the number of documents,Q the number of
terms in the query,L the size of the postings list for
each term,B the width of each row,K = D/B the
number of rows, andU the number of rows that are not
used. Zipf’s law tells us that postings lists vary enor-
mously in size, but we are considering a system with
pruned impact-ordered lists and pessimistically assume
all postings lists are of the pruned lengthL.

Processing the query is a many step process that
starts with clearing the row flags. Then for each term,
the postings are loaded, decompressed, and processed.
That processing in turn involves computing the row
number and checking the row flag, if the flag is zero
the row is cleared and the flag is set. The accumulator
is always increased (and top-k processing is done). At
the end of the query the top-k accumulator pointers are
sorted.

For only two of these steps does the cost depend on
the width and height of the two-dimensional accumula-
tor table:

• c1K, zeroing the flags for each row;

• c2(K − U)B, zeroing all accumulators in all
flagged row (and setting the bits);

wherec1 andc2 are unknown constant factors. We wish
to minimise the cost of initialising the flags,c1K, plus
the cost of initialising all the used rows,c2(K − U)B.

In practice, some documents are more likely
to be selected than others (due to the clustering
hypothesis), and the user does not expect the terms to
be independent. That is, they expect fewer thanQL
distinct documents to be found. We pessimistically
assume each term is independent and identically
(randomly) distributed for this analysis.

The postings for a term would normally be sampled
without replacement, but ifL is big enough andL/D
is small enough, that can be approximated by sampling
with replacement.

P(rowk is unused)
= P(documentd ⊆ kB . . . kB +B − 1 not chosen)
= P(documentd is not chosen)B

= P(documentd is not in postings for termt ⊆ t1..tQ)B

= P(documentd is not in postings for termt)QB

= (1− L/D)QB

The postings are randomly distributed in the
postings list and so represent independent trials,
there areK rows and the probability of a single
row being unused is(1 − L/D)QB . So the
distribution of U is Binomial(K, (1 − L/D)QB .
As mean(Binomial(n, p)) = np, the mean of the
number of unused rows isK(1− L/D)QB . It depends
on the number of terms in the query and the number of
postings for each term.

We wish to minimisec1K + c2(K − U)B. Since
B = D/K we get

c1K + c2(K − U)B

= c1K + c2
(K−U)D

K

= c1K + c2
KD−UD

K

= c1K + c2
KD
K
− c2

UD
K

= c1K + c2D − c2
UD
K

Recall thatU is Binomial(K, (1−L/D)QB and the
mean value isK(1− L/D)QB . We get

c1K + c2D − c2
UD
K

= c1K + c2D − c2
K(1− L

D
)BQD

K

= c1K + c2D − c2(1−
L
D
)BQD

Applying the binomial theorem to(1 − L
D
)QB and

truncatingat the first two terms, we get

c1K + c2D − c2(1−
L
D
)BQD

≈ c1K + c2D − c2(1−
L
D
BQ)D

≈ c1K + c2D − c2(D −
L
D
BQD)

≈ c1K + c2D − c2D + c2LBQ
≈ c1K + c2LBQ
≈ c1

D
B
+ c2LBQ

Fermat’s stationary point theorem tells us that a dif-
ferentiable function has its maxima and minima only
on the boundaries or where the first derivative is zero.
The second derivative tells whether an extreme point is
a maximum or a minimum.

d
dB

(c1
D
B
+ c2LBQ)

= d
dB

(c1
D
B
) + d

dB
(c2LBQ)

= −c1
D
B2 + c2LQ

d2

dB2 (c1
D
B
+ c2LBQ)

= d
dB

(−c1
D
B2 + c2LQ)

= c1
D
B3

By setting the first derivative to zero, we get

c1
D
B2 = c2LQ
B2 = c1D

c2LQ

B =
√

c1D
c2LQ

Since the second derivative is greater than zero, this
must be a local minimum.

4 Experiments
We conducted all our experiments on a system with
dual quad-core Intel Xeon E5410 2.3 GHz, DDR2
PC5300 8 GB main memory, Seagate 7200 RPM 500
GB hard drive, and running Linux with kernel version
2.6.30.

For both the simulation and our search engine, we
set the width of the table to a power of 2. This allows us
to look up the row efficiently using a hashing function
that is just a bit shift. A shift operation is considerably
faster than a division.



First, we tried a number of simulation tests to in-
spect the behaviour of the algorithm. Then we inte-
grated the algorithm into our search engine and investi-
gated its performance using the INEX 2009 Wikipedia
collection [18] and queries from the INEX 2009 Effi-
ciency Track [19].

4.1 Simulation
We wrote a simulation program to test both the tradi-
tional static array allocation and our proposed logical
two dimensional table algorithm.

The program takes five parameters; (1)collec-
tion size, (2) postingslist length, (3) numof terms,
(4) width in bits and (5)numof repeats. The first two
parameters allow the program to simulate different
collection sizes with various lengths of postings lists.
The third parameter tries to simulate real world queries
with different number of terms. Thewidth in bits
parameter sets the size of the width for the logical two
dimensional table. The last parameter simply tells the
program to repeat a number of times with the same
settings.

Each posting only contains an index number (the
document number) for indexing into the accumulators.
All the index numbers are randomly generated using the
Mersenne Twister 64-bit random generator [12]. Every
run of the simulation is guaranteed to execute with a dif-
ferent seed for the random number generator and each
run was repeated 20 times. For each run, the same lists
of postings are used by both the accumulator initialisa-
tion techniques.

Figure 3 shows the results of simulating a collec-
tion of three million documents. The horizontal axes
represents the width in bits and the vertical axes are
the performance ratio of the two accumulator initiali-
sation techniques (the total time taken by the logical
two dimensional table over the total time taken by the
static array structure). A ratio below 100% means the
performance increase in our proposed algorithm again
the static array approach and above 100% means per-
formance decrease. Four sets of simulation were con-
ducted, each with 1, 2, 3 and 10 terms. For each set,
various lengths of postings lists were used, ranged from
10 to 3 million.

As shown in Figure 3, the four sets of simulation
showed the same pattern. When the length of the post-
ings lists was short, smaller width for the logical table
showed better performance, while larger width shower
better performance for long postings lists. On average,
bits between 8 and 12 showed good performance for
both short and long postings lists.

One thing to note is the caching effects for simula-
tions with a small number of postings. An example of
the results being affected by caching is when there are
two logical rows (width in bit is 1) and only 10 post-
ings processed. The size of the static accumulator array
is 6 million bytes (the collection size times the byte size
of a single accumulator) and the size of the flag array is

1.5 million bytes (we used one byte for each flag). By
hand calculation, the performance ratio should be more
than 25% because the size of the flag array is 25% of
the static accumulator array plus the initialisation of 10
rows for the 10 postings (the worst case). However, the
simulation showed that the performance ratio is only
about 8.5%. This further suggests that the logical two
dimensional table is more efficient because the structure
has a smaller memory footprint and thus can be better
cached by the CPU (the CPU has 6 MB of L2 cache).

Overall, our proposed logical two dimensional table
for accumulator initialisation shows good performance,
especially when postings lists are short. This suggests
that the algorithm can be better used together with post-
ings pruning techniques, which only processes partial
postings.

4.2 Search Engine
As discussed in Section 2, our search engine
supports reading of the dictionary and postings
directly in memory, impact-ordered postings, partial
decompression and postings pruning at query time. In
this section we discuss how the proposed accumulator
initialisation algorithm performs in our search engine.

In the previoustopk pruning implementation [22],
an extra array of pointers was used and the size of the
array was k. The pointers were used to keep track of
the top documents in the static array of accumulators.
At the final stage, the top k pointers are sorted instead
of sorting the static accumulator array directly.

The implementation of ourheapkpruning algorithm
is also based on the pointer array. Theheapkalgorithm
simply uses the same pointer array to keep track of top
documents. The minimum accumulator among the top
k is always pointed to by the first pointer in the heap.
During the update of an accumulator, the new value of
the accumulator is checked against the minimum. If the
new value is greater than the minimum, the minimum
pointer simply points to the new value and the heap
structure is re-built. If the new value is less than the
minimum, then there is nothing to be done. At the final
stage, the documents which are tracked by the heap data
structure are sorted and returned.

A modified BM25 is used for ranking. This variant
does not result in negative IDF values and is defined as:

RSVd =

∑

t∈q

log

(

N

dft

)

·

(k1 + 1) tftd

k1

(

(1 − b) + b ×

(

Ld
Lavg

))

+ tftd

Here,N is the total number of documents, anddft
and tftd are the number of documents containing the
term t and the frequency of the term in documentd,
andLd andLavg are the length of documentd and the
average length of all documents. The empirical param-
etersk1 andb have been set to 0.9 and 0.4 respectively
by training on the INEX 2008 Wikipedia collection.

We used the INEX 2009 Wikipedia collection [18]
and the 115 Type-A (short) queries for the INEX 2009
Efficiency Track [19]. The collection was indexed with



Figure 3: Simulation results on a collection of three million documents.

Collection Size 50.7 GB
Documents 2666190

Average Document Length 881 words
Unique Words 11393924
Total Words 2348343176
Postings Size 1.68 GB

Dictionary Size 269 MB

Table 1: Summary of INEX 2009 Wikipedia Collection.

no words stopped and stemming was not used. Table 1
shows a summary of the document collection.

Initially our search engine used the traditional static
array approach for accumulators. To see the perfor-
mance of the accumulator initialisation with regards to
the overall runtime, the 115 queries were evaluated with
all the optimisation options enabled (in-memory dictio-
nary and postings, impact-ordered postings, partial de-
compression and theheapkpruning). Theheapkprun-
ing method was used with a value of 15 for the number
of top k documents and various values of 10, 100, 1000,
10 000, 100 000, 1 000 000 for static pruning. The to-
tal run-times are shown in Figure 1. When no more
than 10 000 postings were processed, the accumulator
initialisation took between 50% and 96% of the total
evaluation time. When 100 000 and 1 000 000 postings
were processed, it took 20% and 11% respectively. As
shown in previous work [22], query pruning is not only

efficient, but also very effective, even when as few as
1000 postings are processed.

Now our search engine is bottlenecked by the accu-
mulator initialisation. We need a solution for efficient
accumulator initialisation. The logical two dimensional
table has been integrated into theheapkpruning algo-
rithm. The integration requires only changes to a few
lines of code. Before processing each query, the flags in
the logical two dimensional table are initialised. During
the update of an accumulator, the flag is checked to see
if it is necessary to initialise the logical row first.

In order to compare the performance again the
static array approach, we performed the same set of
tests on the logical two dimensional table. The width
for the logical two dimensional table was chosen to be
8 bits. The results are shown in Figure 4(a). The only
performance differences between these two structures
are the accumulator initialisation, the ranking and the
total times. The logical two dimensional table took
about zero time for the accumulator initialisation since
it was very fast to initialise 11719 flags (the height
of the table calculated as shown in Algorithm 1).
However, the logical two dimensional table added
small amount of overhead for ranking due to the extra
operations required to keep track of the flag status (as
shown in Algorithm 2). When comparing the total
evaluation time, the logical two dimensional table
outperformed the static array structure in all runs. The
best performance increase is 93% when 10 postings



Figure 4: Comparison between the static array and logical two dimensional table structures for accumulator
initialisation. The first bar in each group shows the resultsfor the static array structure while the second shows the
results for the logical two dimensional table.

Figure 5: Precision for P@15 using assessments from
the INEX 2009 Efficiency Track [19].

are processed. The performance increases for 100,
1000, 10 000, 100 000 are 86%, 67%, 28% and 17%
respectively. However, there is only a 2% performance
increase when 1 000 000 postings are processed.

The effectiveness of theheapkpruning algorithm
is shown in Figure 5 using precision at 15 for various
values of postings. The highest precision is 0.487 when
1 000 000 were processed. There were small precison
drops 2% and 8% when 100 000 and 10 000 postings
were processed respectively. The precisions were dra-
maticly dropped 18%, 47% and 59% when 1000, 100,
10 postings were processed. Overall, it shows that post-
ings pruning is very effective.

We also tested the same set of experiments on a
larger document collection provided by the University
of Queensland. The collection has 23 million
documents and is created by splitting each section of
the documents as a single document in the INEX 2009
Wikipedia collection [18]. Since there is no evaluation
for this collection, we cannot show precision.

Figure 4(b) shows the results. It took about 1700
milliseconds for initialising the static accumulator
array, compared with zero time for the logical two
dimensional table. There was a overall performance
increase of 97%, 93%, 80% and 25% when 10, 100,
1000, 10 000 postings were processed respectively.
However, there was a overhead of 40%, 23% for
processing 100 000, 1 000 000 postings respectively.

Compared with the original Wikipedia collection,
the processing of 100 000 and 1 000 000 postings
caused more overhead for the logical two dimension
table in the segmented collection. In the original
collection, few terms have more than 1 000 000
postings. However, when documents are segmented by
sections, more lists are closer to or longer than 100 000
and 1 000 000.

5 Conclusion and Future Work
In this paper we have proposed an efficient accumulator
initialisation algorithm, especially when used together
with postings pruning. The algorithm represents the
traditional static accumulator array as a logical two di-
mensional table and uses an array of flags to keep track
of the initialisation status of the accumulators. Before
processing queries, the array of flags is initialised in-
stead of initialising the accumulator array. During the
update of accumulators, a hashing function (shift) is
used to locate the accumulator.

Using two dimensional structure is not new. It has
been used in other areas of Computer Science, includ-
ing paging and file systems [7]. In paging and file sys-
tems, multiple dimensions (multiple level of indexing)
are required in order to address large amount of mem-
ory or very big files. We will explore the use of multiple
dimension structures for efficient addressing large doc-



ument collections, like the ClueWeb 2009 collection (1
billion documents) in future work.

We have explained how we have integrated the log-
ical two dimensional table into ourheapkpruning algo-
rithm. In future work, we will examine the efficiency of
the structure in other pruning algorithms. One example
is the any-time stopping pruning algorithm [1]. It uses
an array of lists (indexed by quantised impact values)
to keep track of the current top candidates stored in the
static accumulator array. The logical two dimensional
table can be integrated into this pruning algorithm with-
out affecting the original algorithm.

For both of our simulation and search engine, we
defined the width to be a power of 2 and used a shift
hashing function for the logical two dimensional table.
A shift hashing function is considerably faster a divi-
sion. However, we have not explored how far away

from the optimum (B =
√

c1D
c2LQ

) this is. If the gap

between the optimum and a power of 2 is very large,
which means a lot un-necessary accumulators are ini-
tialised, it might be more efficient to define the width as
the optimum and use division for hashing.

References
[1] Vo Ngoc Anh, Owen de Kretser and Alistair Moffat.

Vector-space ranking with effective early termination.
pages 35–42, 2001.

[2] Vo Ngoc Anh and Alistair Moffat. Compressed inverted
files with reduced decoding overheads. pages 290–297,
1998.

[3] Vo Ngoc Anh and Alistair Moffat. Random access
compressed inverted files.Australian Computer Science
Comm.: Proc. 9th Australasian Database Conf., ADC,
Volume 20, Number 2, pages 1–12, February 1998.

[4] Vo Ngoc Anh and Alistair Moffat. Inverted index
compression using word-aligned binary codes.Inf. Retr.,
Volume 8, Number 1, pages 151–166, 2005.

[5] Ricardo Baeza-Yates, Aristides Gionis, Flavio Jun-
queira, Vanessa Murdock, Vassilis Plachouras and Fab-
rizio Silvestri. The impact of caching on search en-
gines. InSIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 183–190,
New York, NY, USA, 2007. ACM.

[6] Jon L. Bentley and M. Douglas Mcilroy. Engineering a
sort function, 1993.

[7] Daniel P. Bovet and Marco Cesati.Understanding the
Linux Kernel, 3rd Edition. O’Reilly, November 2005.

[8] Chris Buckley and Alan F. Lewit. Optimization of
inverted vector searches. pages 97–110, 1985.

[9] Thomas H. Cormen, Charles E. Leiserson and Ronald L.
Rivest.Introduction to Algorithm. The MIT Press, 1990.

[10] Donna Harman and Gerald Candela. Retrieving records
from a gigabyte of text on a minicomputer using sta-
tistical ranking. Journal of the American Society for
Information Science, Volume 41, pages 581–589, 1990.

[11] Xiang-fei Jia, Andrew Trotman, Richard O’Keefe and
Zhiyi Huang. Application-specific disk I/O optimisation
for a search engine. InPDCAT ’08: Proceedings of the
2008 Ninth International Conference on Parallel and
Distributed Computing, Applications and Technologies,
pages 399–404, Washington, DC, USA, 2008. IEEE
Computer Society.

[12] Makoto Matsumoto and Takuji Nishimura. Mersenne
twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator.ACM Trans. Model.
Comput. Simul., Volume 8, Number 1, pages 3–30,
1998.

[13] A. Moffat, J. Zobel and S. T. Klein. Improved inverted
file processing for large text databases. pages 162–171,
1995.

[14] Alistair Moffat and Justin Zobel. Self-indexing inverted
files for fast text retrieval. ACM Trans. Inf. Syst.,
Volume 14, Number 4, pages 349–379, 1996.

[15] Alistair Moffat, Justin Zobel and Ron Sacks-Davis.
Memory efficient ranking.Inf. Process. Manage., Vol-
ume 30, Number 6, pages 733–744, 1994.

[16] Michael Persin. Document filtering for fast ranking.
pages 339–348, 1994.

[17] Michael Persin, Justin Zobel and Ron Sacks-Davis. Fil-
tered document retrieval with frequency-sorted indexes.
J. Am. Soc. Inf. Sci., Volume 47, Number 10, pages 749–
764, 1996.

[18] Ralf Schenkel, Fabian Suchanek and Gjergji Kasneci.
YAWN: A semantically annotated wikipedia xml cor-
pus. March 2007.

[19] Ralf Schenkel and Martin Theobald. Overview of the
inex 2009 efficiency track. In Shlomo Geva, Jaap
Kamps and Andrew Trotman (editors),Focused Re-
trieval and Evaluation, Volume 6203 ofLecture Notes
in Computer Science, pages 200–212. Springer Berlin /
Heidelberg, 2010.

[20] Martin Theobald, Ralf Schenkel and Gerhard Weikum.
Efficient and self-tuning incremental query expansion
for top-k query processing. pages 242–249, 2005.

[21] Andrew Trotman. Compressing inverted files.Inf. Retr.,
Volume 6, Number 1, pages 5–19, 2003.

[22] Andrew Trotman, Xiang-Fei Jia and Shlomo Geva. Fast
and effective focused retrieval. In Shlomo Geva, Jaap
Kamps and Andrew Trotman (editors),Focused Re-
trieval and Evaluation, Volume 6203 ofLecture Notes
in Computer Science, pages 229–241. Springer Berlin /
Heidelberg, 2010.

[23] Yohannes Tsegay, Andrew Turpin and Justin Zobel.
Dynamic index pruning for effective caching. pages
987–990, 2007.

[24] Howard Turtle and James Flood. Query evaluation:
Strategies and optimizations.Information Processing &
Management, Volume 31, Number 6, pages 831 – 850,
1995.


