Efficient Accumulator Initialisation

Xiang-Fei Jia Andrew Trotman Richard O'Keefe
Department of Department of Department of
Computer Science Computer Science Computer Science
University of Otago University of Otago University of Otago
Dunedin, New Zealand Dunedin, New Zealand = Dunedin, New Zealand
fei@cs.otago.ac.nz andrew@cs.otago.ac.nz ok@cs.otago.ac.nz
Abstract IR efficiency is normally addressed %
in terms of accumulator initialisation, disk 1/O, -
decompression, ranking and sorting. Traditionally, 31 Accumulator Init
f : ; Dictionary Read
the pe_rformance of_ searqh engines is d_omlnated by s | Postings Read
slow disk 1/0, CPU-intensive decompression, complex g% @ Decompression
similarity ranking functions and sorting a large §. B Ranking
number of candidate documents. However, after we §5| | = S
have applied a number of optimisation techniques, = 3|
our search engine is bottlenecked by accumulator <
initialisation. In this paper, we propose an efficient g |
accumulator initialisation algorithm, which represents @ 7,
the traditional static accumulator array as a logical o %ﬁ% %% W%
N ,\Q

two dimensional table and uses a number of flags to & o8
track the initialisation status of the accumulators. The ~
efficiency of the algorithm is verified by a simulation

program and a search engine. The overall performancg'gu_re L _The pe_rf_ormance_of our optimised search

can be as good as a 93% increase in throughpu. engine using traditional static array for accumulator
initialisation.

Keywords Accumulator Initialisation, Efficiency,

Postings Pruning. and inverted files, disk I/0 is completely eliminated by

_ simply storing the index in memory. Instead of storing
1 Introduction the traditionakdocument number, term frequengair

Effectiveness and efficiency are two of the main issug§ POstings, we pre-compute and store impact values
in Information Retrieval (IR). Effectiveness has beeri’St€ad [15, 1]. The search engine simply adds the
the main focus of research. In recent years, efficiendj’Pact values when ranking.

has started to draw more attention under the trend of POStings pruning at query time is a very effective
larger document collection sizes. method for reducing the number of postings to be pro-

IR efficiency is normally addressed in terms of accessed and the number of accumulators to be sorted,

cumulator initialisation, disk 1/0, decompression, rankYVnile still maintaining high precision [8, 14, 23, 17, 1,
ing and sorting. A large portion of the performance of22]- Since only part of the postings lists is processed in
search engines is dominated by (1) slow disk read &uning. only partial decompression of postmgs lists is
dictionary terms and the corresponding postings listé&auired [14, 13, 3, 2]. Our search engine has adopted
(2) CPU-intensive decompression of postings lists, (3} N€ap data structure to keep track of the top k docu-
complex similarity ranking functions and (4) sorting gments and s_tatlc pruning of postings lists with partial
large number of possible candidate documents. THEECOMPression. o
effect of accumulator initialisation on the performance Figure 1 shows the performance of our optimised
has almost been ignored. search engine with these optimisations enabled. The
However, after we applied a number of optimisatiorflocument collection and queries are the INEX 2009
techniques, our search engine was bottlenecked by af//kipedia collection [18] and the 115 Type-A (short)
cumulator initialisation. We have deployed space effiduéries from the INEX 2009 Efficiency Track [19].

cient compression algorithms for storing the dictionanN!y the top k=15 results are retumed and each
column in the figure corresponds to a static pruning

Proceedings of the 15th Australasian Document Comput- of 10, 100, 1000, 10000, 100000, 1 000 000 postings.
ing Symposium, Melbourne, Australia, 10 December 2010. When no more than 10000 postings are processed,
Copyright for this article remains with the authors. the accumulator initialisation takes most of the time,

between 50% and 96% of the total time. When therpostings should be impact ordered so that most
are 100000 and 1 000 000 postings (which is one thironportant postings can be processed first and the
of the collection size) being processed, the accumulatégss important ones can be pruned using pruning
initialisation still takes 20% and 11% of the totalmethods [16, 17, 1]. One approach is to store postings
evaluation time respectively. in order of term frequency and documents with the
In this paper, we propose an efficient accumulatosame term frequency are grouped together [16, 17].
initialisation algorithm, using static data structures, f Each group stores the term frequency at the beginning
the term-at-a-timeapproach. The algorithm logically of the group followed by the compressed differences
partitions the static array of accumulators into a twaf the document numbers. The format of a postings
dimensional table. A flag is created for each logicalist for a term is a list of the groups in descending
row to indicate if that row has been initialised. Beforeorder of term frequencies. Another approach is
processing a new query, only the flags are re-initialisetb pre-compute similarity values and use these
instead of re-initialising all accumulators. Because thpre-computed impact values to group documents
algorithm keeps track of all accumulators, there is ninstead of term frequencies [1]. Pre-computed impact
loss of precision. values are positive real numbers. In order to better
The remainder of the paper is organised as followsompress these numbers, they are quantised into whole
In Section 2, we discuss the related work. Second 3 daumbers [15, 1]. Three forms of quantisation method
scribes in detail how the algorithm works and presentdave been proposedLdft. Geom Uniform.Geom
a mathematical model. In Section 4, the performancRight.Geop) and each of the methods can better
of the algorithm is conducted on a simulation and oupreserve certain range of the original numbers [1]. In

search engine. Section 5 concludes. our search engine, we use pre-computed BM25 impact
values to group documents and the differences of
2 Related Work document numbers in each group are compressed using

]]) Variable Byte Coding by default. We choose to use the
Disk 1/O involves reading query terms from aynitorm Geonmuantisation method for transformation
dictionary (a vocabulary of all terms in the coIIectlon)of the impact values, because théniform.Geom
and the corresponding postings lists for the term%]uantisation method preserves the original distribution

The dictionary has a small size and can be loadegk ihe numbers, thus no decoding is required at query
into memory at start-up. However, due to their 1ar9§jme Each impact value is quantised into an 8-bit
size, postings are usually compressed and stored Qihole number.

disk. A number of compression algorithms have been gjnce only partial postings are processed in query

developed and compared [21, 4]. Another way Ofning, there is no need to decompress the whole
reducing disk 1/O is cachlng,. either at application Ievg ostings lists. Skipping [14] and blocking [13] allow
or system level [5, 11]. Since the advent of 64-bithqe qo-random access into encoded postings lists and

machines with vast amounts of memory, it has becomg,y decompress the needed parts. Further research
feasible to load both the dictionary and the compressgg, i [3, 2] represent postings in fixed number of

postings into main memory, thus eliminating all diskyjts thys allowing full random access. Our search
/0. Reading both dictionary and postings lists intoyngine partially decompress postings list based on the
memory is the approach taken in our search engine. ot case of the static pruning. Since we know the
. The processing (decompression and similarity ranks, . ameter value of the static pruning and the biggest
ing) of postings and subsequent sorting of accumulas;,e of 5 uncompress impact value (4 bytes), we can
tors can be computationally expensive, especially When jtiply these number together to find the cut point for
queries contain frequent terms. Processing of thesg fr&écompression. We can simply hold decompression
quent terms not only takes time, but also has little iMager that number of postings have been decompressed.
pact on the_ final ranking res_ult_s. Postings pruning at Ao number of accumulators, usually as a static ar-
query time is a method to eliminate unnecessary prQay need to be created and initialisedtienm-at-a-time
cessing of postings and thus reduce the number of N0Bacessing [8, 10]. The accumulators hold the interme-
zero accumulators to be sorted. A number of pruningiaie accumulated results for each document. For large
methods have been developed and proved to be efT:'(')Ilections, a large number of accumulators has to be

cient and effective [8, 14, 23, 17, 1, 22]. In previou§geq. Initialisation of large number of accumulators can
work [22], thetopkpruning algorithm partially sorts the (516 time. One solution to cut down the initialisation

static array of accumulators using a special version Gfye is to use few accumulators, which are allocated

quick sort [6] and statically prunes postings. Based 0[)ging dynamic search structures [15, 14]. Depending
this work, we have developed theapkpruning algo- 4, \yhich dynamic structure is used, the memory space
rithm. - Instead of explicitly sorting the accumulators, o qired for each accumulator can be several times that
we uses a heap data structure to keep track of the QP the static array structure. For example, a balanced
documents. Red-Black tree structure [9] requires about 20 bytes

Traditionally, postings are stored in pairs ofty aach accumulator on 32-bit architectures, and about
(document number, term frequencyairs. However,

32 bytes on 64-bit architectures, compared with only 4 large chuck of memory in one go, rather than split-
bytes needed in a static array. Only 20% (12.5% for 64ing the same of amount of memory into many smaller
bit) or less of the total number of accumulators shoulgieces and allocating one piece at at time. Modern com-
be allocated, otherwise the dynamic structure uses mopaters come with very large memories, so it is worth to
memory. The more memory is used, the longer it takesacrifice small amount of memory for speed. Second,
to allocate. two steps are required to locate each accumulator be-

Since only a portion of accumulators can be allocause rows are not guaranteed to be allocated consecu-
cated using dynamic search structures, a pruning algtively in memory (the first step is to locate the row and
rithm has to be used to keep only the top candidatedbe second step to find the offset in the row).
and to prune other less important ones [15, 14]. On Another question is how to determine the dimension
the other hand, our search engine allocates all accumofthe logical table. In the following sections, a math-
lators, and not only keeps track of the top candidatesmatical model is provided to answer this question for-
but also updates the less important accumulators. Thisally and a simulation program is tested with various
leaves the possibility for the less important candidatesizes of width. For now, let us concentrate on how the
to be among the top ones at the final stage. algorithm works.

The criticism of theterm-at-a-timeapproach is the Initially, the flags are initialised to zero, indicating
requirement of accumulators in order to hold intermeall the accumulators having zero values. When updat-
diate results. Alternatively, th@ocument-at-a-timap- ing an accumulator with a new value, the flag associated
proach ranks one document at a time, thus does naith that row of the accumulator is set to 1. For the
need to hold intermediate results [24, 20]. Howeverexample shown in Figure 2, The second accumulator
thedocument-at-a-timapproach requires random scanin the second logical row has a non-zero value and the

of postings lists, which takes time [20]. associated flag for the row has a value of 1.
The width has to be a whole number at least 2. The
3 The Algorithm height can be calculated according to the width and

Instead of using d . lat truct the size of the document collection, as shown in Al-
nstead of using dynamic accumulator Stuctures, We,p 0 1 Because the total number of accumulators

use twols'iatlc arra;;s. On(:] grray IS u:,e;jhto Tr? Id ta”ht presented by the logical table can be more than the
accumulators (one for each document), the other to ho llection size, extra accumulators (showrpadding

f_‘ nlljmbe[)of tﬂaﬂi Every fla}gtls as_szqaigd vtvr:th_a_tpal n Algorithm 1) are allocated in the accumulator array
icuar subset ot the accumultators, indicating the intial ;e ¢ efficiency). The number of extra accumu-

isation status for Fhat sgt of accumulators. Essentigll ators required is usually small and the worst case is
we turn the one dimensional array of accumulatorsinto . ..,
a logical two dimensional table as shown in Figure 2 _ _
The dimension of the table is representedibyght and ~ Algorithm 1 Accumulator Initialisation
width. The number of flags is the same as the height dRequire: width > 2

the table. 1. N <« total_documents_in_collection
. height < (N/width) + 1

init_flags < newarraylheight]
initialise init_flags

: padding < (width * height) — N
acc < newarray[N + padding]

Accumulators

o9k Wb

Flags]

Height

— Algorithm 2 Accumulator Update

] Require: doc_id > 0 anddoc_id < N

— - 1: row + doc_id/width

Width m 2: if init_flags[row] == 0 then

3 indt_flags[row] « 1

— 4: initialise the row of the accumulators irec
5
6

O|=a|a

end if
. accldoc_id] + acc|doc_id) + new_rsv

Figure 2: The representation of the accumulators in a

. . . Algorithm 2 shows how to update the accumulators.
logical two dimensional table.

First, the logical row of an accumulator can be obtained
by a division operation of the index of the accumulator.

One obvious question is why not just dynamicallySecond, the row flag is checked. Two possible cases
allocate each row only when needed and replace tloan happen. If the flag is O, it set to 1, the associated
flags with pointers pointing to the dynamically allo-accumulators are initialised, and the new value is added
cated rows. There are two efficiency issues when rows the accumulator. If the flag is 1, the new value can be
are dynamically allocated. First, it is faster to allocatesimply aggregated to the accumulator.

3.1 The mathematical model

Let D be the number of document§), the number of aK +e(K-U)B

terms in the query[the size of the postings list for — K 4 E=UDD

each term,B the width of each rowK = D/B the 1 K + ¢y KDZUD

number of rows, and the number of rows that are not oK + 62% _ 62%

used. Zipf's law tells us that postings lists vary enor- — K + oD — cpUD

mously in size, but we are considering a system with K

pruned impact-ordered lists and pessimistically assume Recall thatl/ is Binomial K, (1— L/D)?” and the

all postings lists are of the pruned lendth mean value is< (1 — L/D)?5. We get
Processing the query is a many step process that

starts with clearing the row flags. Then for each term, aK + D — %2

the postings are loaded, decompressed, and processed. = K 43D —co K(l—fzé)BQD

That processing in turn involves computing the row = K +cD—cy(1— %)BQD

number and checking the row flag, if the flag is zero
the row is cleared and the flag is set. The accumulator Applying the binomial theorem t61 — %)QB and
is always increased (and top-k processing is done). Atuncatingat the first two terms, we get
the end of the query the top-k accumulator pointers are
sorted. a1 K+ caD —ep(1 — %)BQD
For only two of these steps does the cost depend on c1K +coD —ea(1 - 5BQ)D
the width and height of the two-dimensional accumula- c1K + D — co(D — 5BQD)
tor table: 1K +c3D —coD+ o LBQ
ClK -+ CQLBQ
61% + CQLBQ

e co(K — U)B, zeroing all accumulators in all Fermat's stationary point theorem tells us that a dif-

flagged row (and setting the bits); ferentiable function has its maxima and minima only
on the boundaries or where the first derivative is zero.
The second derivative tells whether an extreme point is
a maximum or a minimum.

XA u

e ¢ K, zeroing the flags for each row;

wherec; andesy are unknown constant factors. We wish
to minimise the cost of initialising the flags, K, plus
the cost of initialising all the used rows, (K — U)B.

In practice, some documents are more likely d%(c1%+CQLBQ)
to be selected than others (due to the clustering = (ag)+ J=(c2LBQ)
hypothesis), and the user does not expect the terms to = —01% +c2LQ

be independent. That is, they expect fewer tidah

distinct documents to be found. We pessimistically 2 b

assume each term is independent and identically ap? (c1 B c2LBQ)

(randomly) distributed for this analysis. = @é—cl zz T 2LQ)
The postings for a term would normally be sampled

without replacement, but iL. is big enough and./D

is small enough, that can be approximated by sampling

C1p3

By setting the first derivative to zero, we get

with replacement. ad = olQ
X 32 — c1D

P(rowk is unused) c2LQ
=P(documentl C kB ...kB + B — 1 not chosen) B = ccglLDQ
= P(document] is not choserj
= P(documentl is not in postings for term C ¢;..t5)% Since the second derivative is greater than zero, this
= P(documentl is not in postings for term)@% must be a local minimum.
=(1— L/D)®5

The postings are randomly distributed in the4 Experiments
postings list and so represent independent trial$)e conducted all our experiments on a system with
there are K rows and the probability of a single dual quad-core Intel Xeon E5410 2.3 GHz, DDR2
row being unused is(1 — L/D)%B, So the PC5300 8 GB main memory, Seagate 7200 RPM 500
distribution of U is BinomialK, (1 — L/D)¥®. GB hard drive, and running Linux with kernel version
As meariBinomial(n,p)) = np, the mean of the 2.6.30.

number of unused rows & (1 — L/D)?E. It depends For both the simulation and our search engine, we
on the number of terms in the query and the number et the width of the table to a power of 2. This allows us
postings for each term. to look up the row efficiently using a hashing function

We wish to minimisec; K + co(K — U)B. Since that is just a bit shift. A shift operation is considerably
B = D/K we get faster than a division.

First, we tried a number of simulation tests to in-1.5 million bytes (we used one byte for each flag). By
spect the behaviour of the algorithm. Then we intehand calculation, the performance ratio should be more
grated the algorithm into our search engine and investihan 25% because the size of the flag array is 25% of
gated its performance using the INEX 2009 Wikipediahe static accumulator array plus the initialisation of 10
collection [18] and queries from the INEX 2009 Effi- rows for the 10 postings (the worst case). However, the

ciency Track [19]. simulation showed that the performance ratio is only
)] about 8.5%. This further suggests that the logical two
4.1 Simulation dimensional table is more efficient because the structure

We wrote a simulation program to test both the tradi@s @ smaller memory footprint and thus can be better
tional static array allocation and our proposed logicafached by the CPU (the CPU has 6 MB of L2 cache).
two dimensional table algorithm. Overall, our proposed logical two dimensional table
The program takes five parameters; (@llec- for accumulator initialisation shows good performance,
tion_size (2) postingslist_length (3) numof_terms especially when postings lists are short. This suggests
(4) width_in_bits and (5)num.of _repeats The first two that the algorithm can be better used together with post-
parameters allow the program to simulate diﬁerenmgslpruning techniques, which only processes partial
collection sizes with various lengths of postings listsPOStings.
The third parameter tries to simulate real world querie .
with different number of terms. Thwidthin,t?its 2.2 Search Engine
parameter sets the size of the width for the logical twé\s discussed in Section 2, our search engine
dimensional table. The last parameter simply tells theupports reading of the dictionary and postings
program to repeat a number of times with the samdirectly in memory, impact-ordered postings, partial
settings. decompression and postings pruning at query time. In
Each posting only contains an index number (théhis section we discuss how the proposed accumulator
document number) for indexing into the accumulatorsnitialisation algorithm performs in our search engine.
All the index numbers are randomly generated using the In the previoustopk pruning implementation [22],
Mersenne Twister 64-bit random generator [12]. Evergn extra array of pointers was used and the size of the
run of the simulation is guaranteed to execute with a difarray was k. The pointers were used to keep track of
ferent seed for the random number generator and eatdte top documents in the static array of accumulators.
run was repeated 20 times. For each run, the same ligks the final stage, the top k pointers are sorted instead
of postings are used by both the accumulator initialisasf sorting the static accumulator array directly.
tion techniques. The implementation of oureapkpruning algorithm
Figure 3 shows the results of simulating a collecis also based on the pointer array. Treapkalgorithm
tion of three million documents. The horizontal axessimply uses the same pointer array to keep track of top
represents the width in bits and the vertical axes a@ocuments. The minimum accumulator among the top
the performance ratio of the two accumulator initiali-k is always pointed to by the first pointer in the heap.
sation techniques (the total time taken by the logicaburing the update of an accumulator, the new value of
two dimensional table over the total time taken by théhe accumulator is checked against the minimum. If the
static array structure). A ratio below 100% means theew value is greater than the minimum, the minimum
performance increase in our proposed algorithm agajpointer simply points to the new value and the heap
the static array approach and above 100% means pstructure is re-built. If the new value is less than the
formance decrease. Four sets of simulation were cominimum, then there is nothing to be done. At the final
ducted, each with 1, 2, 3 and 10 terms. For each settage, the documents which are tracked by the heap data
various lengths of postings lists were used, ranged frostructure are sorted and returned.
10 to 3 million. A modified BM25 is used for ranking. This variant
As shown in Figure 3, the four sets of simulationdoes not result in negative IDF values and is defined as:
showed the same pattern. When the length of the post-
ings lists was short, smaller width for the logical table rsva = ZIOg (%) _ (k1 + met:
showed better performance, while larger width shower req om (s () +
better performance for long postings lists. On average,

bits between 8 and 12 showed good performance for Here, IV is the total number of documents,. a.a@@
;) andtf,; are the number of documents containing the
both short and long postings lists.

One thing to note is the caching effects for simula:[ermt and the frequency of the term in documeht

tions with a small number of postings. An example oftNdLa andLa,, are the length of documenttand the

the results being affected by caching is when there araverage length of all documents. The empirical param-
X 9 . . y) 9 e%ersk:l andb have been set to 0.9 and 0.4 respectively
two logical rows {vidth_in_bit is 1) and only 10 post- b o h Kinedi X
ings processed. The size of the static accumulator arra?// training on the INEX 2008 W'. |peQ|a CO||€C"[IOI’].
: We used the INEX 2009 Wikipedia collection [18]

is 6 million bytes (the collection size times the byte SiZ& dthe 115 Type-A (short) queries for the INEX 2009

of a single accumulator) and the size of the flag array IE]‘ficiency Track [19]. The collection was indexed with

(a) One Term

(b) Two Terms

250%

100% 150% 200%

50%

0%

—— 10
A~ 100
—+- 1000
-%- 10,000
-<- 100,000
-%- 1,000,000
—=— 2,000,000
- 3,000,000

250%

—— 10

A~ 100

+- 1000
-%- 10,000
-<- 100,000
-
-8
>k

200%

- 1,000,000
2,000,000
- 3,000,000

150%

100%
&

50%

0%

§ 10 11 12

13 14 15 16 17 18 19 20

(c) Three Terms

8 9 10 11 12 13 14 15 16 17 18 19 20

(d) Ten Terms

250%

200%

150%

100%

—— 10
A~ 100
—+- 1000
-x- 10,000
-<- 100,000
-%- 1,000,000
—=— 2,000,000
- 3,000,000

250%

—— 10

£- 100

+- 1000
-x- 10,000
-<- 100,000
v
-8
>k

200%

- 1,000,000
2,000,000
- 3,000,000

150%

100%

%
B e e AL e

—O-- x =
. . X Tk g Ao e B e
§°7 L > xoee §7 N ff-—x-r-s%m%.«xrwxw TR X
x e
. X * o
e 4o + ot * A""
+ +
o] Fesegegopopett s o] 413 g g B
(=} (=}
12 3 4 5 6 7 8 & 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3: Simulation results on a collection of three milldocuments.

Collection Size 50.7 GB
Documents 2666190
Average Document Length 881 words
Unique Words 11393924
Total Words 2348343176
Postings Size 1.68 GB
Dictionary Size 269 MB

Table 1: Summary of INEX 2009 Wikipedia Collection.

efficient, but also very effective, even when as few as
1000 postings are processed.

Now our search engine is bottlenecked by the accu-
mulator initialisation. We need a solution for efficient
accumulator initialisation. The logical two dimensional
table has been integrated into theapkpruning algo-
rithm. The integration requires only changes to a few
lines of code. Before processing each query, the flags in
the logical two dimensional table are initialised. During
the update of an accumulator, the flag is checked to see

no words stopped and stemming was not used. Tablgfiitis necessary to initialise the logical row first.

shows a summary of the docum

ent collection.

In order to compare the performance again the

Initially our search engine used the traditional stati§tatic array approach, we performed the same set of

mance of the accumulator initialisation with regards tdor the logical two dimensional table was chosen to be
the overall runtime, the 115 queries were evaluated with bits. The results are shown in Figure 4(a). The only
all the optimisation options enabled (in-memory dictioPerformance differences between these two structures
nary and postings, impact-ordered postings, partial d&'€ the accumulator initialisation, the ranking and the
compression and theeapkpruning). Theheapkprun- total times. The logical two dimensional table took
ing method was used with a value of 15 for the numbebout zero time for the accumulator initialisation since
of top k documents and various values of 10, 100, 1008, was very fast to initialise 11719 flags (the height
10000, 100000, 1000000 for static pruning. The to®f the table calculated as shown in Algorithm 1).
tal run-times are shown in Figure 1. When no mordiowever, the logical two dimensional table added
than 10000 postings were processed, the accumula@pall amount of overhead for ranking due to the extra
initialisation took between 50% and 96% of the totaPPerations required to keep track of the flag status (as
evaluation time. When 100000 and 1 000 000 posting&'own in Algorithm 2). When comparing the total
were processed, it took 20% and 11% respectively. Agvaluation time, the logical two dimensional table

shown in previous work [22], query pruning is not onlyoutperformed the static array structure in all runs. The
best performance increase is 93% when 10 postings

(a) INEX 2009 Wikipedia Collection (b) Segmented INEX 2009 Wikipedia Collection

S
g S | —
— &
o) 7 o
3 72 Accumulator Init g | Accumulator Init
7 Dictionary Read S 7 Dictionary Read 7
S 2 Postings Read ° Postings Read
& @ Decompression = @ Decompression
g O Ranking g ® O Ranking
S o O Sorting _ S o O Sorting
=g
[} > O O |
2 23
= =
o o
3 (=38!
® g
o
S| 7 _ g |
° S S S S e S © o N ©
K S S S A\ S S s S
xS N
NS o0 '\Q o° &

S S
N § X §

Figure 4. Comparison between the static array and logical dimensional table structures for accumulator
initialisation. The first bar in each group shows the redoitshe static array structure while the second shows the
results for the logical two dimensional table.

0.5

Figure 4(b) shows the results. It took about 1700
milliseconds for initialising the static accumulator
] array, compared with zero time for the logical two
dimensional table. There was a overall performance
. increase of 97%, 93%, 80% and 25% when 10, 100,
1000, 10000 postings were processed respectively.
8 However, there was a overhead of 40%, 23% for
processing 100 000, 1 000 000 postings respectively.

1 Compared with the original Wikipedia collection,
the processing of 100000 and 1000000 postings
caused more overhead for the logical two dimension
10 100 1000 10000 100000 1000000 table in the segmented collection. In the original
collection, few terms have more than 1000000
Figure 5: Precision for P@15 using assessments fropostings. However, when documents are segmented by
the INEX 2009 Efficiency Track [19]. sections, more lists are closer to or longer than 100 000
and 1 000 000.

are processed. The performance increases for 100,)
1000, 10000, 100000 are 86%, 67%, 28% and 17% Conclusion and Future Work

respectively. However, there i,s only a 2% performanc% this paper we have proposed an efficient accumulator
Increase Whef‘ 1000000 postings are_processe_d. initialisation algorithm, especially when used together
. The efffect_weness Of_ thbeap!(prumng algorlthm with postings pruning. The algorithm represents the
is shown in Fl_gure 5 using precision ".’It 1.5 for VarioU, 4 gitional static accumulator array as a logical two di-
values of postings. The highest precision is 0.487 Wheﬁ]]ensional table and uses an array of flags to keep track
1000000 were processed. There were small PreCISAR the initialisation status of the accumulators. Before
drops 2% and 8% when 100000 and 10000 postin ocessing queries, the array of flags is initialised in-

were Iprgcesseg rl%ifeit%/ely' ghSeggrecLsionlsov(\)/grelg Sfead of initialising the accumulator array. During the
maticly droppe 0, 477 an o when : pdate of accumulators, a hashing function (shift) is
10 postings were processed. Overall, it shows that POSised to locate the accumulator

ings pruning is very effective. Using two dimensional structure is not new. It has

We also tested the same sgt of experiments OMfen used in other areas of Computer Science, includ-
larger document collection provided by the Un|ver5|tying paging and file systems [7]. In paging and file sys-

of Queensland. The collection has 23 million ms, multiple dimensions (multiple level of indexing)

. - ot
documents and is created by splitting each section (?je required in order to address large amount of mem-

the documents as a single document in the INEX 2008ry or very big files. We will explore the use of multiple

W|k|ped|a collgctlon [18]. Since there IS No eVa“"at'ondimension structures for efficient addressing large doc-
for this collection, we cannot show precision.

0.4

P@15
0.3

0.2

0.1

ument collections, like the ClueWeb 2009 collection (111] Xiang-fei Jia, Andrew Trotman, Richard O'Keefe and
billion documents) in future work.

We have explained how we have integrated the log-
ical two dimensional table into otreapkpruning algo-
rithm. In future work, we will examine the efficiency of
the structure in other pruning algorithms. One example
is the any-time stopping pruning algorithm [1]. It uses

an array of lists (indexed by quantised impact valuedjt?]

to keep track of the current top candidates stored in the
static accumulator array. The logical two dimensional
table can be integrated into this pruning algorithm with-
out affecting the original algorithm.

For both of our simulation and search engine, wét3]

defined the width to be a power of 2 and used a shift
hashing function for the logical two dimensional table.

A shift hashing function is considerably faster a divi-[14]

sion. However, we have not explored how far away

from the optimum B =

c1 D
CQLQ

) this is. If the gap

between the optimum and a power of 2 is very large,

which means a lot un-necessary accumulators are ini-
tialised, it might be more efficient to define the width a
the optimum and use division for hashing.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

&)

[10]

Vo Ngoc Anh, Owen de Kretser and Alistair Moffat.
Vector-space ranking with effective early termination.
pages 35-42, 2001.

Vo Ngoc Anh and Alistair Moffat. Compressed inverted
files with reduced decoding overheads. pages 290-297,
1998.

Vo Ngoc Anh and Alistair Moffat. Random access
compressed inverted fileAustralian Computer Science
Comm.: Proc. 9th Australasian Database Conf., ADC
Volume 20, Number 2, pages 1-12, February 1998.

Vo Ngoc Anh and Alistair Moffat. Inverted index
compression using word-aligned binary code$.Retr,
Volume 8, Number 1, pages 151-166, 2005.

Ricardo Baeza-Yates, Aristides Gionis, Flavio Jun-

Y16]

(17]

(18]

(19]

(20]

Zhiyi Huang. Application-specific disk I/O optimisation
for a search engine. IRDCAT '08: Proceedings of the
2008 Ninth International Conference on Parallel and
Distributed Computing, Applications and Technologies
pages 399-404, Washington, DC, USA, 2008. |IEEE
Computer Society.

Makoto Matsumoto and Takuji Nishimura. Mersenne
twister: a 623-dimensionally equidistributed uniform
pseudo-random number generatACM Trans. Model.
Comput. Simul. Volume 8, Number 1, pages 3-30,
1998.

A. Moffat, J. Zobel and S. T. Klein. Improved inverted
file processing for large text databases. pages 162-171,
1995.

Alistair Moffat and Justin Zobel. Self-indexing inverted
files for fast text retrieval. ACM Trans. Inf. Syst.
Volume 14, Number 4, pages 349-379, 1996.

Alistair Moffat, Justin Zobel and Ron Sacks-Davis.
Memory efficient ranking.Inf. Process. ManageVol-
ume 30, Number 6, pages 733744, 1994.

Michael Persin. Document filtering for fast ranking.
pages 339-348, 1994.

Michael Persin, Justin Zobel and Ron Sacks-Davis. Fil-
tered document retrieval with frequency-sorted indexes.
J. Am. Soc. Inf. SgiVolume 47, Number 10, pages 749—
764, 1996.

Ralf Schenkel, Fabian Suchanek and Gjergji Kasneci.
YAWN: A semantically annotated wikipedia xml cor-
pus. March 2007.

Ralf Schenkel and Martin Theobald. Overview of the
inex 2009 efficiency track. In Shlomo Geva, Jaap
Kamps and Andrew Trotman (editorsfocused Re-
trieval and Evaluation Volume 6203 ofLecture Notes

in Computer Sciencgages 200-212. Springer Berlin /
Heidelberg, 2010.

Martin Theobald, Ralf Schenkel and Gerhard Weikum.
Efficient and self-tuning incremental query expansion
for top-k query processing. pages 242—-249, 2005.

queira, Vanessa Murdock, Vassilis Plachouras and Faf®l] Andrew Trotman. Compressing inverted filést. Retr,

rizio Silvestri. The impact of caching on search en-

Volume 6, Number 1, pages 5-19, 2003.

gines. InSIGIR "07: Proceedings of the 30th annual [22] Andrew Trotman, Xiang-Fei Jia and Shiomo Geva. Fast

international ACM SIGIR conference on Research an
development in information retrievapages 183-190,
New York, NY, USA, 2007. ACM.

Jon L. Bentley and M. Douglas Mcilroy. Engineering a
sort function, 1993.

Daniel P. Bovet and Marco CesatUnderstanding the [23]

Linux Kernel, 3rd Edition O’Reilly, November 2005.

Chris Buckley and Alan F. Lewit. Optimization of
inverted vector searches. pages 97-110, 1985.

Thomas H. Cormen, Charles E. Leiserson and Ronald L.
Rivest.Introduction to AlgorithmThe MIT Press, 1990.

Donna Harman and Gerald Candela. Retrieving records
from a gigabyte of text on a minicomputer using sta-
tistical ranking. Journal of the American Society for
Information Sciencevolume 41, pages 581-589, 1990.

(24]

and effective focused retrieval. In Shlomo Geva, Jaap
Kamps and Andrew Trotman (editorsfocused Re-
trieval and Evaluation Volume 6203 ofLecture Notes

in Computer Sciencgages 229-241. Springer Berlin /
Heidelberg, 2010.

Yohannes Tsegay, Andrew Turpin and Justin Zobel.
Dynamic index pruning for effective caching. pages
987-990, 2007.

Howard Turtle and James Flood. Query evaluation:
Strategies and optimizationkformation Processing &
ManagementVolume 31, Number 6, pages 831 — 850,
1995.

